Conversion:
1 degree = Pi/180 radians
1 radian = 180 degrees / Pi
Pi radians = 180 degrees; Pi/2 radians = 90 degree
s = r*t, where r is the raduis of a circle, t is the angle of a swept arc, and s is the length of the arc swept out.
t Degrees radians sin(t) cos(t) tan(t) -------------------------------------------------------- 0 0 0 1 0 30 Pi/6 1/2 SQRT(3)/2 SQRT(3)/3 45 Pi/4 SQRT(2)/2 SQRT(2)/2 1 60 Pi/3 SQRT(3)/2 1/2 SQRT(3) 90 Pi/2 1 0 invalidThe 'invalid' entry is because the tan(90) is undefinded, where sin(90)/cos(90) = 1/0, which is division by zero, an undefined or infinite state. Which direction infinite depends on the application.
Law of Cosines:
a^2 = b^2 + c^2 - 2bc*cos(A)
b^2 = a^2 + c^2 - 2ac*cos(B)
c^2 = a^2 + b^2 - 2ab*cos(C)
Double - Angle Formulas
sin(2*t) = 2*sin(t)*cos(t)
cos(2*t) = cos^2(t) - sin^2(t) = 2*cos^2(t) -1 = 1 - 2*sin^2(t)
tan(2*t) = 2*tan(t) / [1-tan^2(t)]
Half - Angle Formulas
sin^2(t) = [1 - cos(2*t)] / 2
cos^2(t) = [1 + cos(2*t)] / 2
Addition and Subtraction Formulas:
sin(x+y) = sin(x)*cos(y) + cos(x)*sin(y)
sin(x-y) = sin(x)*cos(y) - cos(x)*sin(y)
cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y)
cos(x-y) = cos(x)*cos(y) + sin(x)*sin(y)
tan(x+y) = [tan(x)+tan(y)] / [1-tan(x)*tan(y)]
tan(x-y) = [tan(x)-tan(y)] / [1+tan(x)*tan(y)]
exponential equivalents:
sin(t) = (e^it - e^-it)/2i
cos(t) = (e^it + e^-it)/2
tan(t) = (e^it - e^-it) / i(e^it + e^-it)
where i = SQRT(-1), the unit imaginary number.
Back to Jeff's Math Page
Back to Jeff's Manual Override
This page was last updated created September 17, 1996.